All pictures are for illustrative purposes only.
Store address and hours
location_on 4131 Fraser St. Vancouver BC Get Directions
phone 604-875-1993 Call us
access_time Hours
Monday - Friday | 9AM - 5:30PM |
Saturday - Sunday & Holidays | Closed | See Holiday Hours |
Closed
• Opens Tue at 9AM
close
Menu
-
close
-
CATEGORIES
-
-
-
-
-
-
-
-
-
-
-
-
-
Featured Items
-
-
-
-
-
-
-
More mirco-controllers
-
More Developement Tools
-
-
More Prototyping
-
More Modules
-
-
Featured Items
-
More prototyping Tools
-
-
-
-
-
-
-
-
Featured Item
-
-
-
-
-
-
-
Featured Items
-
-
-
-
-
-
-
-
Featured Items
-
-
-
-
-
-
-
-
-
-
-
-
-
Featured Items
-
-
-
-
-
-
-
-
-
Featured Items
-
-
-
-
-
-
Popular Cleaners
-
-
-
Featured Items
-
-
-
-
-
-
-
Featured Items
-
-
-
-
-
Featured Items
-
-
-
-
Featured Products
-
-
-
-
-
more motor
-
-
more power supplies
-
-
Featured Items
-
-
-
more electrical devices
-
-
-
-
-
-
-
Featured Items
-
-
-
-
-
-
BRANDS
-
- PROJECTS
-
COMMUNITY
-
-
-
FEATURED POSTS
-
-
-
- SALE
- GST/HST Break
7 INCH CAPACITIVE TOUCH X710 SCREEN 1024X600
Description
- As for most ARM boards we observed that using CPU’s ADC conversion didn’t work very well for large-size LCDs (7” and larger) with four-wire resistive touch. Some vendors use an external USB or UART module to connect these LCDs. To save CPU’s hardware resources and minimize usage of external modules we developed the one-wire technology which only uses a single GPIO pin and we have integrated this technology in all our LCD controller boards. This technology uses an MCU to communicate with the touch panel’s chip (we use the ADS7843 chip or other chips compatible with ADS7843) and process the four-wire resistor’s analog signals and output the filtered stable signals to the ARM board via GPIO. We tested this technology in various LCDs and it worked very well even for a large LCD of 19” and some commonly observed issues such as screen flipping and jittering were not encountered.
- Today most LCDs whose size is less than 12” have LED backlight. We use the one-wire’s MCU to process the backlight as well. The backlight is set with a range of values. Users can set a value to the backlight and this value is passed to MCU for processing via one-wire’s GPIO pin.
- Each FriendlyARM’s LCD module has a unique ID which is saved in the one-wire’s MCU. When the MCU reads the ID information from GPIO signals it will recognize the LCD model and instruct the bootloader to load the corresponding LCD driver, making a FriendlyARM LCD plug and play.
- As for the one-wire technology for our LCDs with capacitive touch we removed the resistive touch panel’s chip but kept the backlight adjusting function and LCD’s ID information. Therefore the communication between the capacitive touch and the ARM board is still standard IIC.
- Attention:the one-wire technology is different from the commonly known single-bus communication. Actually in the ARM board we use a PWM timer (not PWM pins) to generate the communication frequency (9600Hz). For more details please refer to the driver’s source code.